Time courses of lidocaine effects on sodium membrane currents in small and large neurons.
نویسندگان
چکیده
Time courses of effects of lidocaine on sodium currents and sodium dependent action potentials were studied in somata of small and large neurons. Cultured rat sensory spinal ganglion cells (diameter: 30 microns) and neurons of the buccal ganglion of Helix pomatia (diameter: 150 microns) served as the test cells. The latency of the suppressive action of lidocaine was the longer the larger the of the cells was. Maximal blocking effects occurred within 10 min in sensory spinal ganglion cells and within 40 min in snail neurons. Model calculations based on the assumptions (i) that lidocaine is distributed in the extra- and intracellular space by simple diffusion and (ii) that the drug concentration at the outer surface of the cells is elevated stepwisely, revealed a strong dependency of intracellular concentration changes on the size of the cells. From these findings it is concluded that lidocaine blocks sodium channels primarily from the intracellular side.
منابع مشابه
Noradrenergic System Increases Miniature Excitatory Synaptic Currents in the Barrel Cortex
Introduction: Neurons in layer II and III of the somatosensory cortex in rats show high frequency (33 ± 13 Hz) of miniature excitatory postsynaptic currents (mEPSCs) that their rates and amplitudes are independent of sodium channels. There are some changes in these currents in neurodegenerative and psychological disorders. Regarding to well known roles of the neuromodulatory brain systems in...
متن کاملTetrodotoxin-resistant sodium channels in sensory neurons generate slow resurgent currents that are enhanced by inflammatory mediators.
Resurgent sodium currents contribute to the regeneration of action potentials and enhanced neuronal excitability. Tetrodotoxin-sensitive (TTX-S) resurgent currents have been described in many different neuron populations, including cerebellar and dorsal root ganglia (DRG) neurons. In most cases, sodium channel Nav1.6 is the major contributor to these TTX-S resurgent currents. Here we report a n...
متن کاملThe Inhibition of Sodium Currents in Myelinated Nerve by Quaternary Derivatives of Lidocaine
The inhibition of sodium currents by quaternary derivatives of lidocaine was studied in single myelinated nerve fibers. Membrane currents were diminished little by external quaternary lidocaine (QX). QX present in the axoplasm (<0.5 mM) inhibited sodium currents by more than 90%. Inhibition occurred as the sum of a constant, tonic phase and a variable, voltage-sensitive phase. The voltage-sensi...
متن کاملThe Inhibition of Sodium Currents
The inhibition of sodium currents by quaternary derivatives of lidocaine was studied in single myelinated nerve fibers. Membrane currents were diminished little by external quaternary lidocaine (QX). QX present in the axoplasm (<0.5 mM) inhibited sodium currents by more than 90%. Inhibition occurred as the sum of a constant, tonic phase and a variable, voltagesensitive phase. The voltage-sensit...
متن کاملThe Inhibition of Sodium Currents
The inhibition of sodium currents by quaternary derivatives of lidocaine was studied in single myelinated nerve fibers. Membrane currents were diminished little by external quaternary lidocaine (QX). QX present in the axoplasm (<0.5 mM) inhibited sodium currents by more than 90%. Inhibition occurred as the sum of a constant, tonic phase and a variable, voltagesensitive phase. The voltage-sensit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- General physiology and biophysics
دوره 9 4 شماره
صفحات -
تاریخ انتشار 1990